Comparative response of epithelial cells and osteoblasts to microfabricated tapered pit topographies in vitro and in vivo.
نویسندگان
چکیده
Microfabricated tapered pits in vivo can stimulate connective tissue and bone attachment to percutaneous devices, secondarily preventing epithelial migration, and promoting long-term implant survival. Epithelial cells, which form a seal with a dental implant, acting as a barrier, and osteoblasts, which form bone, can come into contact with the same implant topography. To investigate whether the phenotypic characteristics of each cell type influenced cell response to micro-topography, we compared the response of the two cell types to the same dimensions of tapered pits, in vitro, and in vivo. Increased spreading, mature FAs, and restricted migration characterized individual PLE cell response to tapered pits. In contrast, osteoblasts were highly migratory, formed smaller, punctate adhesions and mineralized. Epithelial sheets formed from high-density PLE cultures demonstrated that tapered pits did not inhibit migration of the PLE sheets in vitro, similar to in vivo observations. In vitro, PLE sheet migration correlated with increases in vinculin, tyrosine phosphorylation, cytokeratin and ERK 1/2 phosphorylation. The findings of this study show that tapered pits stimulate osteoblast mineral deposition in vitro and in vivo, but do not prevent epithelial sheet migration. In vitro results suggest that epithelial sheet migration could involve altered FA mediated signal transduction.
منابع مشابه
Polarized and Non-Poarized Human Oviduct Epithelial Cell Ultrastructure in Vitro
Purpose: This study designed to examine polarized culture of epithelial cells from human ovidutc and their ultrastracture under polarizing condition. Materials and Methods: The human oviduct was obtained from patients having undergone total hysterectomy and epithelial cells were isolated using collagenase type I. The epithelial cells were either cultured on ECM (Extracellular matrix) Gel coate...
متن کاملMorphology and Ultrastructure of Mouse Polarized Endometrial Epithelial Cell Monolyer in Vitro
Purpose: The objective for this study is to investigate the morphology and ultrastructure of mouse endometrial epithelial cell monolayer cultured on matrigel in dual-chambered system as an in vitro mouse endometrial epithelial cell culture model that mimics structural and functional properties of the endometrial epithelium in vivo. Materials and Methods: Mouse endometrial epithelial cells were...
متن کاملEffect of Matrigel on Function and Morphology of Human Endometrial Epithelial Cell in vitro
The importance of extra cellular matrix (ECM) in development and function of different cells has been reported but little is known about its role in human endometrial epithelial cells. The aim of the present study was to examine effects of artificial ECM (Matrigel) and progesterone on the function and morphology of human endometrial epithelial cells in vitro. Methods: Endometrial samples were ...
متن کاملبررسی چسبندگی و تغییرات مورفولوژیک سلولهای استئوبلاست انسان در مجاورت MTA تیره، MTA سفید و سیمان پرتلند
Background and Aim: Osteoblasts and periodontal ligament cells play a major role in wound healing after root end resection. The interaction of osteoblasts with filling materials is critical in healing of surgical lesions. The aim of this study was to evaluate the morphology and adhesion of human osteoblasts (MG-63 cell line) in contact with IRM, gray MTA, white MTA and Portland cement (PC) as r...
متن کاملTooth Regeneration with Stem Cell Sources
Introduction: During the last decade, advances in tissue engineering and stem cell-based tooth regeneration have provided realistic and attractive means of replacing lost or damaged teeth. The first adult stem cells isolated from dental tissues were dental pulp stem cells (DPSCs). When transplanted with hydroxyl apatite/tri calcium phosphate (HA/TCP) powder, they formed a dentin-like structure...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biomaterials
دوره 28 14 شماره
صفحات -
تاریخ انتشار 2007